
1

DXchange: A Digital Property System For People

admin@DXchange.org

www.DXchange.org

Abstract. DXchange empowers software developers to mint licenses

for their applications which may be traded like non-fungible crypto

currency tokens. This system expands the universe of possibilities in

software development and delivery.

1. Definitions

DXchange Token (Token) – A software license which may be traded like a non-fungible

crypto currency token.

DRM – Digital rights management is system to facilitate the ownership and trading of

DXchange tokens.

DRM Server – A server program, accessible via the internet, which administers access to

software via tokens.

Software Application – An executable file with machine instructions for the computer

and operating system on which it runs.

Protected Code – Encrypted binary code which, once decrypted, must be converted to

machine instructions for the computer and operating system on which the Software

Application runs.

Instance Hash – Binary data maintained in synchronization with a DRM Server by a

Software Application.

Private Key – Binary data unique to each token, accessible by the Software Application

for each token, but not by the DRM Server.

2

2. Introduction

As the value of software applications increases, traditional software companies move to

lock down and control application use via centralized systems which prevent users

from enjoying ownership rights. Corporations exercise control about who may have

access to their software and about which currency systems may be used to buy access.

This has prevented innovation and created barriers to entry, both in the development

and distribution of new software applications and in the payment systems used to

purchase access.

 A digital rights management (DRM) system based on cryptographic proof and

protected code can allow individuals to transfer ownership of a token without the

knowledge or approval of the software application creator.

 Such a system facilitates a free market for software application tokens. This free

market attracts capital to the world of software development and distribution. The

capital will be shared between users and developers and will provide incentives for the

creation of new software applications and services that are currently not financially

viable.

3

3. Protected Code

Protected code runs within a software application and its behavior may not be modified

without causing the application to crash. Protected code prevents hackers from

modifying interactions between the software application and a DRM server. The

following explains how the DXchange implementation of protected code works.

 The software application contains a protected code interpreter which reads and

decrypts procedures from an external file. Each procedure in the protected code file has

been encrypted with a seed value (S1, S2 …) designated at the time the protected code

file was created. The protected code interpreter attempts to reconstruct the

appropriate seed value using the current state of one or more variables when each

procedure is invoked. If the state of the protected code has been modified such that the

seed value is incorrectly constructed, the procedure will be improperly decrypted and

the application will crash.

4

4. Secure Communication and Identity Verification

The DRM server maintains a record for every active token. Each record contains 1) a

hash of the private key for the token 2) unique random values which are present in the

protected code for each token and 3) the instance hash. Note that the DRM server does

not have the private key for any token.

Each software application with an active token must include a valid Config.bin file.

This is a password-encrypted file containing a private key which uniquely identifies the

token, the URL of the DRM server and the instance hash.

 The software application symmetrically encrypts data via protected code using

algorithms and unique (per token) data embedded in protected code. The DRM server

replicates this encryption process using the data saved in the appropriate record.

In order for the software application to accomplish this task, it must have access to

the private key, which is hashed as part of the procedure. However, the DRM server can

accomplish the same task using only a hash of the private key and data stored in the

appropriate record.

 Therefore the application software can securely communicate with the DRM server

while at the same time proving that it has access to the private key associated with the

token.

5

5. Synchronization of Application State with the DRM Server

Synchronization between the software application and the DRM server is required to

prevent more than one active instance of a token. Without synchronization, it would be

possible to simply copy the Config.bin file, the protected code file and the software

application to a new directory or computer and run the software application from that

new location as well as from the old location.

 To prevent “double spending” of tokens, the software application must verify that its

copy of the instance hash, from the Config.bin file, matches the DRM server’s instance

hash for the same token. Via protected code the software application 1) extracts the

instance hash from the Config.bin file 2) sends the instance hash to the DRM server 3)

receives back from the DRM server a new instance hash 4) saves the new instance hash

to the Config.bin file. If the DRM server fails to provide a valid response in step 3), the

protected code enters an invalid state and the software application crashes.

6. Decentralization, the Private Key

A fundamental tenet of decentralization is that the end user alone has chain of custody

for any private key which defines ownership of property. With this in mind the DRM

server was designed so that it does not need the private key.

 In a system where the software application generates its own private key, the DRM

server must limit the number of tokens which may be added to its registration

database.

 We can easily envision a system where the software application creates its own

private key and where upon registration the DRM server facilitates payment in crypto

currency before any token is delivered to the software application.

7. Decentralization, the DRM server

In a fully decentralized system, the rules enforced by the DRM server must be

unalterable and the DRM server functionality itself must be decentralized in a way

which guarantees that it is always available. At this time, a blockchain based system is

the only proven way to provide both decentralization and availability.

8. Current Implementation

The current implementation of the system includes a program which is not part of the

DRM server or the software application, TransctionAgentManager, which generates

private keys and protected code for each token. TransactionAgentManager sends the

encrypted Config.bin and Data.bin (protected code file) for each token to the DRM

6

server. The server does not have access to the password of the Config.bin file so does

not have access to the private key.

 When a user launches an instance of the software application which does not have a

Config.bin file associated with it, they are prompted for an integration id. The

integration id for each token is created by TransactionAgentManager and may be sent

to a user who has paid for a token. The integration id is a single encrypted string

containing the URL for the DRM server, the private key for the token, the password for

the Config.bin file and an ID which may be used to communicate with the DRM server in

order to request download of the Config.bin and Data.bin files currently stored on the

DRM server. After the user enters the integration id, the application software interacts

with the DRM server to download the Config.bin and Data.bin file contents and once in

place, the instance hash is immediately incremented, thereby locking out anyone else

who might have the same integration id.

 The tasks of maintaining the DRM server and creating new tokens are separated, so

incentives to accomplish these two activities may be separated. The owner of the

software application’s source code will want control over the issuance of new tokens,

but may not want to be burdened with the task of managing the DRM server.

9. Final Note

The protected code compiler and protected code interpreter used by the system is still

evolving; a great deal of work by many people in zero knowledge proofs and secure

computing continues. The application of protected code in a DRM system is DXchange’s

primary accomplishment, a significant step toward empowering individuals and small

organizations.

